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Abstract
We propose a model for the calculation of the second order susceptibilities of
groups II–VI and III–V compound semiconductors. The model is based on the
assumption that the dominant effect that contributes to the second harmonic
generation is the variation of the polar charge of the bond under the action of
the laser radiation field. We show that a simple relation for the second order
susceptibility in terms of the basic parameters of the bond follows from the
dielectric theory of Phillips. This relation is checked for many experimental
values for nonlinear susceptibilities of polar semiconductor compounds taken
from the literature.

1. Introduction

There have been many theories attempting to compute the nonlinear optical susceptibility in
semiconductors. Among these a class of models generally named polarizable bond models
connect the nonlinear behaviour of the compound semiconductors with the properties of the
polar charge of the bond. In this respect we recall the polarizable bond models of Tang and
Flytzanis [1, 2], Levine [3], Mochan and Barrera [4], Wijers et al [5], and Patterson and
Herrendorfer [6, 7]. We present a new model in the same vein.

The model proposed in this letter for computing the second order susceptibility in polar
semiconductors strikes a very good balance between accuracy and simplicity. The starting point
is the dielectric theory of Phillips [8–10], which could be considered nonconventional in the
sense that: ‘stress is laid throughout on methods for incorporating quantum-mechanicaleffects
into properties of chemical bonds through algebraic relations rather than through variational
solutions of the wave equation’ (see the abstract of [10]). Such methods, which avoid direct
calculation of the wavefunction, may become important in the future. This point of view is
supported by our previous work [11], in which it is shown that such methods provide good
results in modelling atomic and molecular systems. The present letter presents new arguments
along this line.
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Resulting from the Phillips theory, the linear susceptibility in polar semiconductors is a
function of the supplementary energy of the bond, due to the existence of the polar charge.
In addition, the electric dipole moment of the bond is a function of the bond polarity. Using
the tensorial expressions for the first and second order susceptibilities, together with Phillips’s
relations, we obtain a simple relation for the second order susceptibility. This relation leads to
values for the nonlinear susceptibilities of semiconductor compounds that agree well with the
experimental values taken from the literature.

The analysis is performed in the CGS electrostatic system.

2. Basic tensorial relations

The unit cell in the II–VI and III–V semiconductor compounds is a cube which contains four
tetrahedral bonds. Due to the existence of a polar charge, the bond has a permanent electric
dipole, denoted by µ. We denote the electric dipole moment induced by an external applied
field by �µ. It is given by the following relation:

�µ = α̃ · E (1)

where α̃ is the bond polarizability and E is the intensity of a variable external electric field.
Since the bond polarizability is a function of E , relation (1) can be written as

�µ = α̃0 · E + ˜̃
β : E · E + · · · (2)

where α̃0 and ˜̃
β are, respectively, the field independent linear and nonlinear bond

polarizabilities.
The Cartesian coordinate axes, Oκ xyz, are fixed for the bond labelled κ , where κ =

1, 2, 3, 4, corresponding to the four bonds in the unit cell. The origin Oκ of the axes is at the
centre of the bond, and the Oκ z axis is longitudinal—that is, it is situated along the bond.

Since α̃, α̃0, and ˜̃
β are tensors, equations (1) and (2) can be written as

�µi =
∑

j

αi j E j (3)

�µi =
∑

j

α0i j E j +
∑

j,k

βi jk E j Ek + · · · (4)

where the indices i , j , and k run through the set {x, y, z}.
The function α̃ can be expanded in powers of the components of the electric field:

αi j = αi j |E=0 +
∑

k

∂αi j

∂ Ek
Ek + · · · . (5)

Introducing (5) in (3), one obtains

�µi =
∑

j

αi j |E=0 E j +
∑

j,k

∂αi j

∂ Ek
E j Ek + · · · . (6)

By identification, from (4) and (6), one obtains

α0i j = αi j |E=0 (7)

βi jk = ∂αi j

∂ Ek
. (8)

Since the bond possess axial symmetry, the following relations hold [12]:

αzz = α‖ (9)
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βzzz = β‖ (10)

αxx = αyy = α⊥ (11)

βxzx = βyzy = β⊥ (12)

Ez = E‖ (13)

where α‖ and β‖ are the longitudinal bond polarizabilities, α⊥ and β⊥ are the transverse bond
polarizabilities, and E‖ is the longitudinal component of the intensity of the variable electric
field.

Taking into account the relations (8)–(13), and using the fact that permuting the indices
of αi j and βi jk does not change the values of these terms, one obtains

∂α‖
∂ E‖

= ∂αzz

∂ Ez
= βzzz = β‖ (14)

∂α⊥
∂ E‖

= ∂αxx

∂ Ez
= βxzx = β⊥. (15)

We denote by χ(1) and χ
(2)

14 , respectively, the linear susceptibility and the only nonvanishing
term of the second order susceptibility tensor, in Voigt’s notation. The following relations
between χ(1) and χ

(2)

14 and the transverse and longitudinal bond polarizabilities are valid [12]:

χ(1) = 16 f

3a3
(α‖ + 2α⊥) (16)

χ
(2)

14 = 32 f 3

3
√

3a3
(β‖ − 2β⊥) (17)

where a is the lattice constant and f is a correction factor introduced by Lorentz which accounts
for the fact that the electrons do not respond to the externally applied electric field, but rather
to an effective field.

3. Initial assumptions

The assumptions that underlie our method are as follows.

(1) The dominant effect that contributes to the second harmonic generation is the variation
of the polar charge of the bond under the action of the laser radiation field [3, 12]. This
leads to a supplementary component of the energy of the bond.

(2) The linear susceptibility is a function of the supplementary energy of the bond due to the
existence of the polar charge. Also, the permanent electric dipole moment is a function of
the bond polarity. We recall below these relations, which result from the dielectric theory
of Phillips [8–10].
The dielectric constant in Phillips’s theory [8] is

ε = 1 +
(h̄ωp)

2

E2
g0 + C2

αβ

A (18)

where h̄ is the normalized Planck constant, Eg0 is the energy gap of the Jones zone faces,
Cαβ is the charge transfer energy of the bond due to the existence of polar charge, and A
is a constant approximately equal to unity. The transfer energy Cαβ is a supplementary
energy of the bond, due to the asymmetry of the valence charge along the bond, in the
absence of any applied electric field. This energy is semiclassical in nature [8] and it leads
to an increase of the energy gap of the crystal.



L562 Letter to the Editor

The quantity ωp is the plasma frequency corresponding to the density of the valence
electrons:

ωp =
√

4π Nbe2

m
(19)

where e is the absolute value of the electron charge, m is the electron mass, and Nb is the
density of the valence electrons. Taking into account that there are four tetrahedral bonds
and eight electrons per unit cell, we have

Nb = 8

a3
= 3

√
3

d3
(20)

where d is the length of the bond.
The relation between the dielectric constant and the linear susceptibility is given by

ε = 1 + 4πχ(1). (21)

From (18) and (21) one can obtain the following expression for the linear susceptibility:

χ(1) = 1

4π

(h̄ωp)
2

E2
g0 + C2

αβ

A. (22)

The permanent electric dipole moment is

µ = −eαpd (23)

where αp is the bond polarity.
The supplementary energy of the bond due to the existence of polar charge, Cαβ , changes
with the external applied field. This happens because an infinitesimal variation of the
electric field, dE , leads to the following variation of the interaction energy between the
permanent electric dipole and the electric field:

dCαβ = µ dE = −eαpd dE = −e dαp dE‖ (24)

(3) The following inequality is strongly fulfilled [12, 13]:

β‖ � β⊥. (25)

(4) The bonds possess axial symmetry. This assumption has been used for the deduction of
relations (16) and (17).

4. An expression for the second order susceptibility

From (16) and (22) it follows that

α‖ + 2α⊥ = 3

64π

a3

f

(h̄ωp)
2

E2
g0 + C2

αβ

, (26)

using the fact that A ∼= 1.
The relation (26) will be differentiated with respect to E‖. Using (14), (15), and (22), one

obtains

β‖ + 2β⊥ = − 3

32π

a3

f

(h̄ωp)
2

(E2
g0 + C2

αβ)2
Cαβ

dCαβ

dE‖

= −3π

2

a3

f

Cαβ

(h̄ωp)2
χ(1)2 dCαβ

dE‖
. (27)
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Table 1. Theoretical and experimental values for χ
(2)
14 and the bond parameters.

χ
(2)
14 , experiment

Cαβ d (10−7 esu)
f (eV) (Å) αp χ(1) χ

(2)
14 , theory

Crystal [12] [8] [13] [13] [13] (10−7 esu) [12] [13] [2]

GaP 1.25 3.6 2.36 0.52 0.65 4.66 5 5.2 5.2
GaAs 1.525 3.0 2.44 0.50 0.79 9.37 18 ± 8 6.4 9
GaSb 1.93 1.9 2.65 0.44 1.07 21.35 18 20.0 30
InP 1.215 3.5 2.54 0.58 0.68 7.00 8.0
InAs 1.41 3.2 2.61 0.53 0.90 15.39 20 ± 8 17.4 20
InSb 1.95 2.2 2.80 0.51 1.17 43.59 30 ± 15 24.8 33

Since β‖ � β⊥ (the assumption (3)), from (17) and (27) it follows that

β‖ = 3
√

3

32

a3

f 3
χ

(2)

14 = −3π

2

a3

f

Cαβ

(h̄ωp)2
χ(1)2 dCαβ

dE‖
. (28)

Finally, from (19), (20), (24), and (28), one obtains

χ
(2)

14 = 4

9

m

eh̄2 f 2αpCαβd4χ(1)2
. (29)

This relation is written in the CGS electrostatic system. Introducing the values of the constants
it can be written in a simpler form:

χ
(2)

14 = 1.2143 × 10−8 f 2αpCαβd4χ(1)2
(30)

where Cαβ is given in electronvolts, d in ångströms, the other quantities are without dimensions,
and χ

(2)
14 is in esu. The values of the correction factor f are taken from table 3 of [12]. Since

the values for f are calculated in two ways, we have used the average of the two values. The
theoretical values of χ

(2)

14 , computed using relation (30), together with the experimental values,
and the values for f , Cαβ , d , αp, and χ(1), are given in table 1. We also give the references from
which the values in the corresponding columns are taken. For a given crystal, the experimental
values of χ

(2)

14 are taken from a few papers, as indicated in table 1.

5. Conclusions

An analysis of table 1 shows that the difference between the theoretical and the experimental
values of χ

(2)

14 is of the same order of magnitude as the difference between the experimental
values of χ

(2)

14 taken from different papers for the same crystal.
The relatively good agreement between the theoretical results and the experimental values

taken from the literature suggests that the second order nonlinear effects resulting from the
interaction between the laser field and polar semiconductors are generated by the variation of
the polarization charge along the bond. This agreement confirms implicitly the accuracy of
Phillips’s relation for the linear susceptibility (28), and it justifies the physical interpretation
of the energy Cαβ .
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